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A method for solving game-type control problems with a terminal payoff function is proposed. It consists of applying the ideas 
of Fenchel-Moreau duality [1] to the general scheme of the method of resolvent functions [2]. The main point of the method is 
that the resolvent function can be expressed in terms of the conjugate of the payoff function; then, using the involutive property 
of the conjugation operator for a convex dosed function, one obtains a guaranteed estimate for the terminal value of the payoff 
function, expressed in terms of the initial value of the payoff and the integral of the resolvent function. 

This paper develops ideas presented in [2--4], touches on the topics dealt with in [5-9] and suggests 
new possibilities for the application of  convex analysis to the solution of game-type control problems. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  A N D  A U X I L I A R Y  R E S U L T S  

Suppose we are given a conflict-control process 

~ . = A z + 9 ( u , v ) ,  z e R " ,  u e U ,  v e V  (1.1) 

whereA is a square matrix of order n, qu: U x V ~  R ~ is a function jointly continuous in all its variables, 
and U and V are non-empty compact sets in Euclidean space /~ .  

In addition to the dynamics (1.1), a payoff function a(z), s: R ~ --4 R 1 is given, whose value determines 
the time at which the game terminates. If z(t)  = Z(Zo, ut(.), vt(')) is the trajectory of system (1.1) 
corresponding to an initial state z0 and controls ut(') = {u(x):u(x) ~ U, x ~ [0, t]}, vt(') = {v(~): v(x) 
V, "c ~ [0, t]} chosen by the players, we shall assume that the game terminates at time T if 

f f ( z (T))  <~ 0 (1.2) 

The goal of the pursuer (u) is to ensure that the game terminates; that of the evader (v) is the opposite. 
We shall assume that the strategies used by the pursuer and evader during the game are Lebesgue- 

measurable functions of time. Taking the pursuer's part, we shall indicate sufficient conditions which, 
if satisfied by the parameters of the process (1.1) and the terminal payoff function a(z), guarantee 
termination of the game (1.1), (1.2). At the same time we shall find the guaranteed termination time, 
based on information about the initial state zo and the prehistory of  the control implemented by the 
evader vt('). 

We shall assume that the payoff function a(z) is convex and satisfies a Lipschitz condition 

Io(z)-o(x)l~< lllz -xll, 1 I> 0, Z,X ~ R" (1.3) 

We know from convex analysis [1] that o(z) can be expressed as 

o ( z ) =  max [(p,z)-o*(p)] (1.4) 
pedom o* 

where o*(p), o*: R" --> R 1 is the conjugate of o(z), defined by 

o*(p) = sup[(p,z)  - o(z)], p ~ R" (1.5) 
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and dom o* is the effective domain [1] of 0*09), i.e. 

dom o* = { p E Rn : o* (p ) < +** }. 

It follows from (1.3) that dom o* is a compact set [1]. 
We require additionally that the payoff function o(z) should be bounded below. Then, in view of (1.5), 

we have 

-o* (p )  = inf o(z) 
zcRn 

and so dom o* contains zero. 
Let L be the linear span of the set dom o* [1 i and let rc be the operator of  orthogonal projection 

f r o m / ~  onto the subspace L. Using (1.4), we can verify the relation 

o(z) = o(rtz), z ~ R n (1.6) 

2. S C H E M E  OF T H E  M E T H O D  AND M A I N  R E S U L T  

We introduce the following multivalued mappings 

W ( t , v ) =  u W ( t , u , v ) ,  W(t)=  n W ( t , v )  
ucU vc~V 

(W( t , u , v )  = nO( t )9 (u ,v ) ,  ~ ( t )  = exp(tA), t  >~ O) 

Let us assume that the parameters of the process (1.1) satisfy Pontryagin's condition [2, 6], which 
means that W(t)  ;~ 0 for all t ~ 0. 

Since the mapping W(t)  is upper semicontinuous [2], it contains at least one Borelian selector [2, 7, 
10]. Denoting the set of all such selectors by F, we fix one of them ~ . )  ~ F, and put 

t 

~(t, z, T(')) = rc~(t)z + I T(t)dx 
0 

We define the resolvent function by 

I~(t, x, z, v,'/(.)) = supt[~ >-- 0: min max .[(p, W(t  - x, u, v) - T(t - x)) + 
u~U pcdom o ~ 

+~[(p,~(t,Z, T(')))-O* (p)]] <~ 0} (2.1) 

t>--x>--O, z e R  n, v ~ V  

It follows at once from Pontryagin's condition that 

min max ( p , W ( t - x , u , v ) - T ( t - x ) ) < ~  0 (2.2) 
u~U p~doma* 

for all t >>- x >--- O, v ~ V. 
Consequently, if Pontryagin's condition holds, the inequality in (2.1) is true for at least the zero value 

of  the resolvent function. Note, moreover, that if o(~(t, z, ~ . ) ) )  ~< 0, then 13(t, x, z, v, ~ . ) )  = +,,* for all 
v E V, x e [0, t]. But if a(~(t, z, ~ . ) ) )  > 0 for some t > 0, z ~ R n, ~ . ) )  E F, then the resolvent function 
(2.1) takes finite values and is bounded uniformly in x E [0, t], v e V. 

L e m m a  2.1. Assume that the parameters of the process (1.1) satisfy Pontryagin's condition and the 
payoff function o(z) satisfies the conditions of Section 1. Then, if it is true for some t > 0, z e R n and 
~ . )  e F that o(~(t, z, ~ . ) ) )  > 0, the function 

~(x, v) = [~(t, x, z, v, T(')) (2.3) 

is Borelian jointly with respect to the variables (x, v) on the set [0, t] x V. 

Proof. Fix values t > 0, z e R ~ and 7(') e F for which o(~(t, z, ~.))) > 0. It follows from our assumptions about 
the parameters of the process (1.1) and the payoff function ~(z) that the function ~(u, v,p, x, T, [~) = (P, W(t - x, 
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u, v) - ~/) + 13[(p, g(t, z, ~(.))) - 0*(/9)] is jointly continuous in its variables, so that [8, 11] the same is true of the function 

~P(v,x,~/,13)=min max .¥(u,v,p,'c,y,f5) 
uEU p~dom o 

Then, by [11], the multivalued mapping 

B(x, v, r )  = {13 ~> 0: v ( , ,  ~,-t, 13) ~< 0} 

is upper continuous and its selector 

is Borelian jointly in its variables. Therefore, by a property of a superposition of two Borelian functions [10], the 
function (2.3) is Borelian on the set [0, t] x V. 

Consider the ftmction 

T(z, y(.)) = inf[t  I> 0: i inf ~(t, ~¢, z, v, y(.))dx 
L 0 veV (2.4) 

If  the inequality in braces in (2.4) does not hold for any t I> 0, we set T(z, ~ . ) )  = +o0. 
Note that if a(~(t, z, ~(.))) > 0, then 

~nf f$(t,'c,z, v, y(.) ) 

is a measurable function of x, x e [0, t] [2], and since it is bounded uniformly in z, it is also summable 
over the interval [0, t]. But if ~(~(t, z, ~(.))) < 0, the integrand in (2.4) is equal to +** for all x ~ [0, t], 
t > 0. Therefore it iis natural to define the integral as +**, and so the inequality in the definition of the 
function T(z, ~.) )  is automatically satisfied. 

Theorem 2.1. Assume that the parameters of the process (1.1) satisfy Pontryagin's condition and 
the payoff function a(z) satisfies the conditions of Section 1. Assume that for some z ° ~ R n, ~ ( . )  ~ F 
we have T(z °, ~P(.)) < +,0. Then the game may terminate at time T(z °, ~P(.)) from the initial position 
Z 0. 

Proof. Set T = T(z °, ~ (.)). Let v(x), v(x) ~ V, x ~ [0, T] be an arbitrary measurable function. 
We shall show how to choose the pursuer's control. 

Let us consider the case a(~(T(z °, ~P(.))) > 0. Define the control function by 

t 

h(t)  = 1 - ~ ~(T,x,z°,v( ,c) ,  y°(.))dx (2.5) 
o 

The function h(t)  is continuous, non-increasing and h(0) = 1. It follows from the definition of T that 
t. = t.(v(.)), 0 < t, < T exists, such that h(t . )  = O. 

Consider the mul~tivalued mapping 

max [fp, 
pEdom if* t~ 

+~(T, z, z ° , v, y O (.))[(p, ~(T, z ° , ~,o (.))) _ if. {p)]] ~< 0} 

O <~ "¢ <~ t., v ~ V 

It is Borelian jointly in all its variables. 

Indeed, the function 

~ ( . , v , ~ , + , ~ > =  max [(p,w(r_ ~,u,v)_+)+fjt(p,~(r, zO,+O<.)))_o.(p)l ] 
pEdomo *L 
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is jointly continuous in its variables. Therefore, the mapping 

= {u o} 
is upper semicontinuous [11], and so the multivalued mapping 

Ul (x,v) = U(x,v,~(T- x),f3(T,x,z°,v,~l°(.))) 

is Borelian jointly in (x, v) as the superposition of a semicontinuous function and a Borelian mapping [10]. 

Then the selector 

ul('c,v)=lexminUl(x,v), O~ x<~t,, v ~ V  

is a Borelian function of (x, v) [2, 12]. 
Consider the multivalued mapping 

U 2 ( x , v ) = { u ~ U : W ( T - x , u , v ) - 7 ° ( T - x ) = O } ,  t, <x<~T, v ~ V  

It is jointly Borelian in (~, v) [2, 7]. Then the selector 

u2('c,v)=lexminU2('c,v ), t. <'c<~ T, v ~ V  

is a Borelian function of (x, v) [2, 12]. 
Let us define the pursuer's control in the interval [0, T] as 

u(x)=Iu,!~,v!x!!,  x ~ [0,t.) 

[u2('c,v('c)), x ~[t. ,T] 

The function u(m) is measurable [2, 10]. 
Now let us consider the case o(~(T, z °, To(.))) ~< 0. The pursuer's control over [0, 71 is defined 

as 

u(~) = u2(x, v(x)) 

This function is also measurable [2, 10]. 
If the pursuer chooses the control law in this way, then, whatever controls the evader adopts at time 

T, inequality (1.2) will be true along the relevant trajectories of the process (1.1). 
Indeed, Cauchy's formula for the process (1.1) implies a representation 

° ( ))+ ,,u(,>,v(,>)- v ° ( r -  , )]d ,  (2.6) 
O" 

Let o(~(T, z °, 7o(.))) < 0. Because of the pursuer's control law, we have 

~z(T) = ~(T, z ° ,7 ° (.)) 

Hence the truth of (1.2) follows at once from (1.6). 
0 Now let o(~(T(z,  TO(-))) > 0. It follows from (1.6) and (2.6) that 

r , ] ~(z(r))= max . .(p,{(T,z°,'y°(.)))-~*(p)+I(p,w(r-~,u(x),v(~))-~°(r-~))d~ 
p~domo L o 

Adding and subtracting the expression 

[(p,~(T,z 0 ,y O ( ' ) ) ) -  O* ( p ) ] ( l -  h(t, )) 

inside the square brackets, we obtain a relationship from which it follows that the pursuer, by choosing 
the control as indicated, may guarantee that at time T 
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c~(z(T)) ~< O(g(T, z °, y o (.)))h(t.) = 0 

Corollary 2.1. Suppose that the parameters of the process (1.1) satisfy Pontryagin's condition and the 
payoff function 6(z) satisfies the conditions of Section 1. Then, if the pursuer uses the control laws 
described in the proof of the theorem, the following estimate will hold for any T, 0 < T < T(z °, ~(.)) 

v(.s)U~vO(Z(T) ) ~ a(~(T, zO, TO (.)))[1- ~ inf 13(T, x,z °, v, 7 0 (-))dx] 
0 w V  .j 

(2.7) 

where ~ v  is the set of all measurable functions with values in V. 
The proof is analogous to that of the theorem, except that the control function must be defined as 

the difference of the function h(t) defined above in (2.5) and the quantity in square brackets in (2.7). 

3. G E N E R A L I Z E D  DI STANCE 

Let  M* be a convex set and let S be a convex bounded set whose interior contains zero. Then for all 
z ~ R" one can define a generalized distance function as [8] 

d s(zIM*) = inf{p ~> 0:z ~ M" + pS} = o(z) 

It can be shown that this function satisfies the conditions of Section 1. 
Let  us calculate the conjugate o*(p),p ~ / ~ ,  of the generalized distance function ds(z]M*). 
We first note that 

ds(zIM* ) = inf{bts(Z - m):m ~ M*} 

where lxs(x) = inf{It > 0: x ~ gS} is the gauge of S [1, 8]. Therefore, starting from the definition of the 
infimal convolution operation [1, 7], we have 

d s (zl M*) = ( f  [] g)(z) = inf{f(z - y) + g(y): yR n } 

where [] denotes infimal convolution [1],f(x) = lXs(X ) is the gauge of S, x ~ R n and g(y) = 5(y IM*) is 
the indicator of the set M* [1]. 

By the duality theorem for addition and infimal convolution [1], we obtain a formula for the conjugate 
function 

o*(p) = ds(IM*)(p) = f*(p)+ g*(p) = (~C(M*,p), 
S O P E 

[+oo, p ~ S O 

where S o = {p e Rn:(p,x) ~< 1 for everyx ~ S} is the polar of the set S [1],f*(p) = 15(p ISO ) is the indicator 
of the polar of S and g*(p) = C(M*, p) is the support function of M*. 

We have used the fact that the gauge of S is the support function of the polar SO [1], as well as the 
duality of the indicator and support function of a convex dosed set [1]. 

Thus, taking (1.4) into account, we have 

dom ds(I M*)(p) = S O 

d s (zl M*) = ma,[(p, z) - C(M*, p)] 
pES"L J 

Using this repres¢~ntation, one can readily prove the following lemma. 

Lemma 3.1. Let X be a compact set, let M* be a convex closed set, and let S be a convex bounded 
set whose interior contains zero. Then the necessary and sufficient condition for the truth of X tq M* 
¢ ~ i s  

m~[(p ,  z) - C(M*, p)] ~< 0 min 
z~X p~S ~ t j 
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where  S O is the  po la r  o f  S. 
Take M* to  be  a cylindrical set of  the f o r m  M* = M0 + M, where  M0 is a l inear subspace  of  R n and  

M is a convex compac t  subset  of  the o r thogona l  c o m p l e m e n t  L of  M0 i n / ~ .  
Then  the defining formula  (2.1) yields an expression for  the resolvent function I~(t, x, z, v, ~ . ) ) ,  namely  

sup~[$ >~ 0: min m~x [(p, W(t  - x, u, v) - ~ ( t -  x)) + 
l, u~U p~S~' c~L 

+l~[(p,  ~(t ,  z, ~t()))  - C(M, p)]]  ~ 0} ,  t ~> x >I O, z ~ R n, v ~ V 

where  S is a convex compac t  set  in R ~ whose  inter ior  contains  the zero of  the space. 
Using L e m m a  3.1, it can be  shown tha t  this funct ion is precisely the  resolvent  funct ion a(t ,  x, z ,  v, 

~(.)) def ined in [2] by 

sup{a  > /0 : [W(t  - x, v) - ~,(t ~ x)] c~ a [ M  - ~(t, z, ~'(.))] ~ ~} 

We have thus established the connection between the results obtained here and the general scheme 
of  the resolvent-funct ion method .  
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